
Autodesk® Moldflow® Insight 2012

AMI Application
Programming Interface (API)

Revision 1, 18 March 2012.

This document contains Autodesk and third-party software license agreements/notices and/or additional terms and conditions for licensed
third-party software components included within the product. These notices and/or additional terms and conditions are made a part of and
incorporated by reference into the Autodesk Software License Agreement and/or the About included as part of the Help function within the
software.

Contents

Application Programming Interface (API). 1Chapter 1
The OLE Automation Interface. 1

Macros. 2

Macros. 3

Macros. 5

Limitations in API functionality. 5

Autodesk Moldflow Insight command line and VB scripts . . 10Chapter 2
Autodesk Moldflow Insight command line and VB scripts. 11

Creating a Visual Basic script. 11

Debugging a Visual Basic script. 12

Playing macros or scripts using the menu. 12

Running a macro or script from Windows Explorer. 13

Running a Visual Basic script using the command line. 13

Assigning macros or Visual Basic scripts to toolbar buttons. 14

Autodesk Moldflow Insight command line and VB scripts. 14

Command Line dialog. 14

VBScript references. 15

iii

Examples. 16Chapter 3
API example: The first lines of a script. 16

API example: Customized aspect ratio plot. 17

API example: Showing thicknesses within a range. 18

API example: Reading pressure data. 19

API example: Looping through entities. 20

API example: The minimum, maximum, average of an entity list. 21

API example: Writing nodal data to a file. 24

API example: Creating multiple drops. 25

iv

1Application Programming
Interface (API)

The Application Programming Interface (API) in Autodesk Moldflow Insight is an Object Linking
and Embedding (OLE) programming interface that enables Autodesk Moldflow Insight functionality
to be automated.

TIP: Access the API reference documentation from the application Help menu. Click Help
> API Reference to open the Application Programming Interface Documentation.

You can manipulate Autodesk Moldflow Insight from scripts and third-party software.

To control Autodesk Moldflow Insight through the API, you must have access to an OLE
automation client. Examples of such clients include:

■ Windows Script Host that can process Visual Basic Script (VBS), JScript, and other
programming languages

■ Visual Basic for Applications (VBA), a fully featured client that is part of the Microsoft
Office application suite

■ Visual Basic (VB)
■ Internet Explorer
■ Perl
■ Python

Autodesk Moldflow Insight can be automated by using the API in the following ways:

■ Macros can be recorded and played from within the interface or from the Autodesk
Moldflow Insight command line.

■ VB scripts can be run from the Autodesk Moldflow Insight command line with or
without command line arguments, or they can be run from within Autodesk Moldflow
Insight as macros.

The OLE Automation Interface
The Object Linking and Embedding (OLE) automation interface to Synergy (the
Autodesk Moldflow user interface) within the Autodesk Moldflow Application
Programming Interface (API) is provided by an OLE automation client.

The following are examples of OLE automation clients:

■ Windows Script Host that can process Visual Basic Script (VBS), JScript, and
other programming languages

■ Visual Basic for Applications (VBA), a fully featured client that is part of the
Microsoft Office application suite

1

■ Visual Basic (VB)
■ Internet Explorer
■ Perl
■ Python

You can access Autodesk Moldflow Insight directly through the OLE
interface by programming in a scripting language such as Visual Basic Script,
or a programming language such as Visual Basic. While this is the most
powerful and comprehensive way to access API functions, Autodesk
Moldflow Insight also provides you with macro recording and playback
functionality. This can ease your transition to using the API functionality
and provide a more gradual introduction.

VBS is the common form of scripting language used in creating Autodesk
Moldflow Insight API scripts. You can use the Autodesk Moldflow Insight
command line to run scripts that take parameters.

If you opened an earlier version of Autodesk Moldflow Insight on your last
access, and you try to run a macro or script with unsupported features, the
OLE interface will automatically open that earlier version of Autodesk
Moldflow Insight, and your macro or script will fail to execute.

NOTE: You can only have one version of Synergy open at any time.

Macros
Macro recording and playback enables you to repeat user-interface actions
to automate common or repetitive tasks.

Macro recording and playback is built on top of the basic OLE automation
interface and uses Visual Basic script as the recording and playback language.

By default, recorded macros are saved with a .vbs extension in the
following folders (where xxxx is the software release):

■ On Windows XP systems, My Documents\My AMI xxxx Projects\scripts
■ On Windows Vista systems, Documents\My AMI xxxx Projects\scripts

Some user-interface functions are not suitable for macro recording, and
some are not included in the recording architecture in the present release
of Autodesk Moldflow Insight. In addition, certain API functionality that
is available through the OLE automation interface is not available from the
Synergy user interface.

Scripts that do not have command line arguments (input on the Autodesk
Moldflow Insight command line) can be run as macros. If you need to
create a script that uses parameters, you must write a script that takes
command line arguments.

2 | Application Programming Interface (API)

Macros
Macro recording and playback allows you to repeat user-interface actions
to automate common or repetitive tasks.

Creating macros
Creating a macro allows you to automate tasks and repeat them.

NOTE: Not all Autodesk Moldflow Insight functionality is able to be
recorded using macros.

1 Select Tools tab > Automation panel > Record Macro .
The functionality you use will be recorded from now until you stop the
macro recording.

2 Complete the task(s) that you want to perform.

3 Select Tools tab > Automation panel > Stop Recording .
The Save Macro dialog appears.

4 Enter a name for the macro in the File name box and select Save.

Your new script is saved with a (*.vbs) file extension, and can now be
used as a Visual Basic script.

Playing macros or scripts using the menu
You can play a macro or a Visual Basic script in Autodesk Moldflow Insight
using the menu, or using the Autodesk Moldflow Insight command line.

NOTE: You must use the Autodesk Moldflow Insight command line if the
script requires command line arguments unless the script prompts for user
input.

1 Select Tools tab > Automation panel > Play Macro .
The Open Macro dialog appears.

By default, macros are located in Windows XP, My
Documents\My AMI xxxx Projects\scripts, or in Windows Vista,
Documents\My AMI xxxx Projects\scripts , (where xxxx is the software
release).

By default, command line scripts are located in Windows XP, My
Documents\My AMI xxxx Projects\commands, and in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the
software release) and the data\commands folder of the Autodesk
Moldflow Insight installation directory.

2 Select a macro/script, then select Open.

The macro/script plays.

Application Programming Interface (API) | 3

Running a macro or script from Windows Explorer
Because macros are just VBScripts, they can be invoked from Windows even
if Autodesk Moldflow Insight is not running.

Scripts which assume that a particular study is already open, or that a
particular result is already displayed, will probably not work.

NOTE: If your script uses parameters that are entered as command line
arguments, you must run the script from the Autodesk Moldflow Insight
command line.

1 Locate the macro or script using Windows Explorer.

By default, macros are located in Windows XP, My
Documents\My AMI xxxx Projects\scripts, or in Windows Vista,
Documents\My AMI xxxx Projects\scripts (where xxxx is the software
release).

Command-line scripts are located in Windows XP, My
Documents\My AMI xxxx Projects\commands, or in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the
software release) and in the data\commands folder of the Autodesk
Moldflow Insight installation directory.

2 Double-clicking on the required script.

Autodesk Moldflow Insight will start if it is not currently running and
the script will open and run.

Assigning macros or Visual Basic scripts to toolbar buttons
Autodesk Moldflow Insight allows you to assign a macro or a Visual Basic
script to a button on the Tools tab > Assigned Macros panel. This panel
provides quick access to up to 10 different scripts.

NOTE: Scripts which use parameters which are input as command line
arguments must be run from the Autodesk Moldflow Insight command
line.

1 Click Tools tab > Assigned Macros panel > Assign Macro.

2 Select the button, 1 to 10, to which you want to assign a macro or Visual
Basic script.

3 Specify the macro or script to be assigned:

■ To assign a macro, select Macro, click at the right of the text
box, then navigate to and select the *.vbs file you want.

■ To assign a Visual Basic script, select Command Line and enter the
Visual Basic script name in the box provided.

4 | Application Programming Interface (API)

4 In the Button tip text box, enter a description for this macro/command
button. This description will be displayed as a tooltip on the button.

5 Select Save to store the button assignment.

6 You can assign additional buttons by repeating steps 2 to 5 above.

7 Select Close to close the dialog.

8 Click on one of the numbered toolbar buttons to run the associated
macro or script.

Macros
You can assign a command or script file to a button so it can be quickly
accessed.

Assign Macro/Command Button dialog
This dialog is used to assign a command or script file, based on the
Application Programming Interface (API) capabilities of Autodesk Moldflow
Insight, to one of the quick access buttons on the User Macro/Command
Buttons toolbar.

To access this dialog, click Tools > Assign Macro/Command Button .

TIP: To view a list of the standard commands supplied with Autodesk
Moldflow Insight, click View > Command Line, enter help on the
command line and press Go.

Limitations in API functionality
The functionality of the Application Programming Interface (API) has
certain limitations.

The following table lists the features that are not supported through the
API. Command line scripts written in Visual Basic (VB) can access more
functionality than macros recorded in Autodesk Moldflow Insight.

All features not listed are available for inclusion in both macros and VB
scripts.

VB ScriptsMacrosFeature

Not availableNot availableFile Menu Functions:

■ Organize Project
■ Project Properties
■ Options (All options)

AvailableNot availablePrint Functions:

■ Print
■ Print Preview
■ Print Setup

Application Programming Interface (API) | 5

VB ScriptsMacrosFeature

AvailableNot availableSelection Functions:

■ Select By Properties
■ Select By Layers
■ Select All
■ Deselect All

Not availableNot availableSelection Functions:

■ Expand Selection
■ Banding Selection

options

Not availableNot availableEdit Menu Functions:

■ Study Notes
■ Copy Image to

Clipboard

Not availableNot availableView Menu Functions:

■ Toolbars
■ Project
■ Notes
■ Layers
■ All Panels
■ Model Display on/off
■ Default Display
■ Lock/Unlock

Views/Animations/Plots

Not availableNot availableModeling Menu
Functions:

■ Create Inserts
■ Query Entities
■ Surface Boundary

Diagnostics
■ Surface Connectivity

Diagnostics
■ Surface Repair Tools
■ Simplify elements to

beam

Not availableNot availableMesh Menu Functions:

■ Mesh Repair Wizard
■ Show Diagnostics

on/off

Not availableNot availableAnalysis Menu Functions:

6 | Application Programming Interface (API)

VB ScriptsMacrosFeature

■ Import Data From
MPX

Not availableNot availableReport Menu Functions:

■ All entries

Not availableNot availableTools Menu Functions:

■ New Personal
Database

■ Edit Personal Database
■ Search Databases
■ Edit Default Properties

Database
■ Import Legacy

Moldflow/C-Mold
Materials

■ Assign
Macro/Command
Button

■ Criteria Editor
■ Workspace

Not availableNot availableWindows Menu Functions:

■ New Window
■ Cascade, Tile, Split
■ Arrange Icons

Not availableNot availableHelp Menu Functions:

■ All entries

Not availableNot availableProject Panel-right click
menu:

■ Compare Studies
■ New Report

Not availableNot availableStudy Tasks Pane-right
click menu:

■ Hide Report Images

Not availableNot availableStandard Toolbar:

■ Search Help
■ What's This

Not availableNot availableSelect Toolbar:

Application Programming Interface (API) | 7

VB ScriptsMacrosFeature

■ All items except Select
by properties

Not availableNot availableViewer Toolbar:

■ Banding Zoom
■ Move and Edit

Cutting Plane
■ Add XY curve
■ Examine results
■ Split windows

AvailableNot availableAnalysis Toolbar:

Not availableNot availableResults Toolbar:

■ Plot Notes
■ New Report
■ Comparison Criteria

Editor

Not availableNot availableAnimation Toolbar:

■ All items

Not availableNot availableModeling Toolbar:

■ Create Mold Insert
■ Runner System Wizard
■ Cooling Circuit

Wizard
■ Mold Surface Wizard
■ Locate/Edit/Delete

Surface Ties

Not availableNot availableMesh Manipulation
Toolbar:

■ Define Local Mesh
Densities

■ Mesh Repair Wizard
■ Fix Aspect Ratios
■ All Diagnostics

Not availableNot availableDiagnostic Navigator
Toolbar:

■ All items

Not availableNot availableReport Toolbar:

■ All items

8 | Application Programming Interface (API)

VB ScriptsMacrosFeature

Not availableNot availableMacro Toolbar:

Not availableNot availableUser Macro/Command
Buttons Toolbar:

AvailableNot availableScaling Toolbar:

Application Programming Interface (API) | 9

2Autodesk Moldflow Insight
command line and VB scripts

The Autodesk Moldflow Insight command line enables you to invoke Visual Basic (VB) scripts
and macros from a command line user interface within Autodesk Moldflow Insight.

This capability, which is dynamic and extensible, allows you to run scripts that
require you to provide parameters, and you can perform the following tasks:

■ Modify existing scripts to better suit your needs, or extend them to add new
capabilities

■ Add new scripts containing multiple commands, which can be used just like the
built-in commands that come with the Autodesk Moldflow Insight software.

A list of commands is displayed when you type help at the command line.

Scripts or commands in Autodesk Moldflow Insight can take multiple command
line arguments to provide parameters to be used when the script is running.

The name of a script is the prefix of the corresponding script file; for example, the
command HCP corresponds to the Visual Basic script file HCP.vbs in the commands
folder, which prints the active display window.

You can create new scripts using one of the following techniques:

■ Record a macro and save it in a commands folder to create a script that takes no
command line arguments. You can then modify or extend the recorded macro
to provide new capabilities or take command line arguments.

NOTE: Macros that have been modified to take command line arguments can
be launched only from the command line unless the script prompts for user
input.

■ Write scripts from scratch, which may or may not need parameters entered as
command line arguments.

Autodesk Moldflow Insight searches for scripts first in the default project folder
(where xxxx is the software release):

■ On Windows XP systems, typically My Documents\My AMI xxxx Projects
\commands

■ On Windows Vista systems, typicallyDocuments\My AMI xxxx Projects
\commands

If Autodesk Moldflow Insight cannot find the script in the default project folder, it
searches the Autodesk Moldflow Insight commands folder, which is typically

10 | Autodesk Moldflow Insight command line and VB scripts

C:\Program Files\Autodesk\Moldflow Insight xxxx \data\commands (where xxxx
is the software release).

NOTE: Not all functionality in Autodesk Moldflow Insight is accessible through the
API. More functionality is accessible to scripts that are written by hand and run from
the command line than to macros that are recorded and run from within the user
interface.

Autodesk Moldflow Insight command line and VB scripts
The Autodesk Moldflow Insight command line allows you to invoke Visual
Basic (VB) scripts and macros from a command line user interface within
Autodesk Moldflow Insight.

Creating a Visual Basic script
Autodesk Moldflow Insight's command line interface provides access to
Visual Basic scripts (VBScripts) from within the user interface.

User created scripts must be stored in the folder in Windows XP, My
Documents\My AMI xxxx Projects\commands, or in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the software
release).

You can use any text editor to create scripts. Some VBScript editors such
as Microsoft Visual Basic Editor (VBE) or Adersoft VBSEdit, have built-in
debuggers to highlight incorrect code.

You can write scripts that uses parameters which are typically entered by
the user as command line arguments in the Autodesk Moldflow Insight
command line. Alternatively, you can include a prompt for user input. This
allows users to enter parameters if the script is run from within Autodesk
Moldflow Insight.

NOTE: Not all functionality in Autodesk Moldflow Insight is accessible
using the API. More functionality is accessible to scripts written by hand
and run from the command line, than to macros that are recorded and run
from within the interface.

1 Record a macro or type your script into a text editor or Visual Basic
debugger.

2 Save the macro or script to a file with a *.vbs extension in Windows
XP, My Documents\My AMI xxxx Projects\commands, or in Windows
Vista, Documents\My AMI xxxx Projects\commands, (where xxxx is
the software release).

The script can be played from the Command Line dialog View tab >
Windows panel > User Interface > Command Line.

Autodesk Moldflow Insight command line and VB scripts | 11

Debugging a Visual Basic script
The Microsoft Script Debugger can help you to locate and fix bugs in a
Visual Basic script.

Download the debugger from Microsoft.

You can invoke the debugger in several ways.

� If the script crashes, the debugger starts at the line which caused the
crash.

To enable this behavior, turn off Disable Script Debugging in the
Advanced tab of the Internet Properties item in the Control Panel.

� Insert the STOP statement in the script to launch the debugger when
the statement is reached.

Assistance for the STOP function can be found by searching the Microsoft
support page. http://support.microsoft.com

� Invoke the script from the MS-DOS command line:

wscript //d //x scriptname.vbs

Playing macros or scripts using the menu
You can play a macro or a Visual Basic script in Autodesk Moldflow Insight
using the menu, or using the Autodesk Moldflow Insight command line.

NOTE: You must use the Autodesk Moldflow Insight command line if the
script requires command line arguments unless the script prompts for user
input.

1 Select Tools tab > Automation panel > Play Macro .
The Open Macro dialog appears.

By default, macros are located in Windows XP, My
Documents\My AMI xxxx Projects\scripts, or in Windows Vista,
Documents\My AMI xxxx Projects\scripts , (where xxxx is the software
release).

By default, command line scripts are located in Windows XP, My
Documents\My AMI xxxx Projects\commands, and in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the
software release) and the data\commands folder of the Autodesk
Moldflow Insight installation directory.

2 Select a macro/script, then select Open.

The macro/script plays.

12 | Autodesk Moldflow Insight command line and VB scripts

http://support.microsoft.com

Running a macro or script from Windows Explorer
Because macros are just VBScripts, they can be invoked from Windows even
if Autodesk Moldflow Insight is not running.

Scripts which assume that a particular study is already open, or that a
particular result is already displayed, will probably not work.

NOTE: If your script uses parameters that are entered as command line
arguments, you must run the script from the Autodesk Moldflow Insight
command line.

1 Locate the macro or script using Windows Explorer.

By default, macros are located in Windows XP, My
Documents\My AMI xxxx Projects\scripts, or in Windows Vista,
Documents\My AMI xxxx Projects\scripts (where xxxx is the software
release).

Command-line scripts are located in Windows XP, My
Documents\My AMI xxxx Projects\commands, or in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the
software release) and in the data\commands folder of the Autodesk
Moldflow Insight installation directory.

2 Double-clicking on the required script.

Autodesk Moldflow Insight will start if it is not currently running and
the script will open and run.

Running a Visual Basic script using the command line
Autodesk Moldflow Insight's command line interface provides access to
VBScript scripts from within the user interface.

The command line searches for scripts in the folder in Windows XP, My
Documents\My AMI xxxx Projects\commands, or in Windows Vista,
Documents\My AMI xxxx Projects\commands, (where xxxx is the software
release), and in the data\commands folder of the Autodesk Moldflow
Insight installation directory.

1 Select View tab > Windows panel > User Interface > Command Line.

The Command Line dialog appears.

2 Enter the name of the script without its file extension followed by any
command line arguments the script requires.

For example, you may have a script named test_script.vbs which
uses two numerical parameters (5 and 4 in this instance) that need to
be input as command line parameters. Enter test_script 5 4 at the
command line.

3 Select Go.

Autodesk Moldflow Insight command line and VB scripts | 13

The script plays.

Assigning macros or Visual Basic scripts to toolbar buttons
Autodesk Moldflow Insight allows you to assign a macro or a Visual Basic
script to a button on the Tools tab > Assigned Macros panel. This panel
provides quick access to up to 10 different scripts.

NOTE: Scripts which use parameters which are input as command line
arguments must be run from the Autodesk Moldflow Insight command
line.

1 Click Tools tab > Assigned Macros panel > Assign Macro.

2 Select the button, 1 to 10, to which you want to assign a macro or Visual
Basic script.

3 Specify the macro or script to be assigned:

■ To assign a macro, select Macro, click at the right of the text
box, then navigate to and select the *.vbs file you want.

■ To assign a Visual Basic script, select Command Line and enter the
Visual Basic script name in the box provided.

4 In the Button tip text box, enter a description for this macro/command
button. This description will be displayed as a tooltip on the button.

5 Select Save to store the button assignment.

6 You can assign additional buttons by repeating steps 2 to 5 above.

7 Select Close to close the dialog.

8 Click on one of the numbered toolbar buttons to run the associated
macro or script.

Autodesk Moldflow Insight command line and VB scripts
Use the Command Line dialog to run a command or script.

Command Line dialog
This dialog is used to run a command or script file based on the Application
Programming Interface (API) capabilities of Autodesk Moldflow Insight.

To access this dialog, click (View tab > Windows panel > User Interface),
then click the drop-down arrow and select Command Line.

When you enter a command on the command line, the program looks for
a file of the same name with the extension “.vbs” in the following folders:

14 | Autodesk Moldflow Insight command line and VB scripts

■ The folder data\commands where Autodesk Moldflow Insight has been
installed. This folder contains the standard command scripts supplied
by Autodesk.

■ A commands folder under your default project folder (the User Folder
that was set when the program was installed).

TIP: To view a list of the standard commands supplied with Autodesk
Moldflow Insight, enter help on the command line.

VBScript references
More information about VBScript is available from these references.

Books

■ Learning VBScript, Paul Lomax, O'Reilly & Associates, 1997
■ VBScript in a Nutshell (2nd edition). Lomax, Childs, Petrusha. O'Reilly

& Associates, 2003
■ VBScript for Dummies, John Walkenbach. IDG Books, 1996.

Websites

■ VBScript at MSDN
■ VBScript entry at Wikipedia
■ Visual Basic Getting Started, Wikibook

Editors and debuggers

■ Microsoft Visual Basic Editor (VBE) is part of the Visual Studio suite
■ Adersoft VBSEdit
■ Microsoft Script Debugger is available at www.microsoft.com

Autodesk Moldflow Insight command line and VB scripts | 15

http://www.oreilly.com/catalog/vbscript/
http://www.oreilly.com/catalog/vbscriptian2/index.html
http://msdn2.microsoft.com/en-us/library/t0aew7h6.aspx
http://en.wikipedia.org/wiki/VBScript
http://en.wikibooks.org/wiki/Programming:Visual_Basic_Classic/Getting_Started
http://www.vbsedit.com/
http://www.microsoft.com/

3Examples

The following are examples of API scripts that allow you to automate Autodesk Moldflow
Insight.

API example: The first lines of a script
The following template is a suggested starting point for using the Synergy
API with VBScript bindings.

It is good practice to put explanatory comments at the top of your scripts.

The following five lines and their function is outlined.

Option Explicit

The Option Explicit expression is useful to reduce programming errors.
Variables that are used before they are declared will cause an error when
this line is included in the script.

SetLocale("en-us")

The SetLocale option forces the non-English systems to interpret numerical
values as they are in the US. If this setting is not included, then numerical
values will be interpreted in the system's native language. This is a problem
where commas are used instead of full stops (such as in Germany).

Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")

These two lines create an OLE automation object which starts the version
of Synergy (the Autodesk Moldflow user interface) that was most recently
executed.

NOTE: only one version of Synergy is able to be run at any time.

Synergy.SetUnits "METRIC"

“ENGLISH” can be used as an alternative to “METRIC” to use US units by
default.

'@
'@ DESCRIPTION
'@
'@
'@ SYNTAX

16 | Examples

'@ TheFirstLines
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@ none
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"
'
' Put remainder of code here.
'
MsgBox "Script Complete"
Wscript.Quit

API example: Customized aspect ratio plot
This example creates a custom contour plot using aspect ratio data from
mesh diagnostics. The script uses the DiagnosisManager class for access to
mesh diagnostics data, and the PlotManager class to create the custom user
plot.

'@
'@ DESCRIPTION
'@ Take the Standard Aspect Ratio Plot and convert it into a contour plot
'@
'@ SYNTAX
'@ CustomAspect
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@ Assumes a study file is open within synergy
'@ none
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim DiagnosisManager, PlotManager
Dim Elems, AR, ARPlot

' Get aspect ratio diagnostics
Set Elems = Synergy.CreateIntegerArray()
Set AR = Synergy.CreateDoubleArray()
Set DiagnosisManager = Synergy.DiagnosisManager()
DiagnosisManager.GetAspectRatioDiagnosis 0.0, 0.0, True, Elems, AR
Set DiagnosisManager = Nothing

Examples | 17

' Create user plot
Set PlotManager = Synergy.PlotManager()
Set ARPlot = PlotManager.CreateUserPlot()
ARPlot.SetDataType "ELDT"
ARPlot.SetName "Aspect ratio by contours"
ARPlot.AddScalarData 0.0, Elems, AR
ARPlot.Build

MsgBox "Script Complete"
Wscript.Quit

API example: Showing thicknesses within a range
You can use any standard function to interact with the user, such as
VBScript's InputBox() function. This example displays the Thickness
diagnostic with thicknesses between two user-specified values.

This script can be run as either a command or a macro. If parameters were
not supplied on the command line when the script was run, you will be
prompted to input parameters. The bold section below implements the
user input prompts after checking for two command line argument values.

'@
'@ DESCRIPTION
'@
'@
'@ SYNTAX
'@ ShowThicknessInRange [Min] [Max]
'@
'@ PARAMETERS
'@ Min Minimum Thickness value
'@ Max Maximum Thickness value
'@
'@ DEPENDENCIES/LIMITATIONS
'@ none
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim DiagnosisManager
Dim MinimumThickness, MaximumThickness
Dim Args

Set Args = Wscript.Arguments
If Args.Count <> 2 Then

MinimumThickness = InputBox("Enter Minimum Thickness")
MaximumThickness = InputBox("Enter Maximum Thickness")

Else
MinimumThickness = Args(0)
MaximumThickness = Args(1)

End If

Set DiagnosisManager = Synergy.DiagnosisManager()
DiagnosisManager.ShowThickness MinimumThickness, MaximumThickness, False

18 | Examples

MsgBox "Script Complete"
WScript.Quit

API example: Reading pressure data
Time-series data are available through the API as the independent values
of a plot. This is how animations are represented.

This example performs the following tasks:

■ Extracts the pressure result and computes the average pressure of each
set of five time steps

■ Reconstructs a custom pressure plot

You can use this example when you want to read a specific result set, or
put the data into a new result set.

'@
'@ DESCRIPTION
'@ Split Presssure Time Series Result into Individual Results.
'@ Recreate the Pressure Time Series Result
'@
'@ SYNTAX
'@ ReadingPressureData
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@ none
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim PlotManager
Dim ResultID, Header, UserPlot, Indp, nodeID, Value, IndpValues, i, j
,Ave, Count, Str

ResultID = 1180

' Split Presssure Result into Individual Results.
Set PlotManager = Synergy.PlotManager()
Set IndpValues = Synergy.CreateDoubleArray()
PlotManager.GetIndpValues ResultID, IndpValues

' Display to Screen Average Pressure at interval through results
For i = 0 to IndpValues.size()-1 Step 5

Set PlotManager = Synergy.PlotManager()
Set Indp = Synergy.CreateDoubleArray()
Indp.AddDouble(IndpValues.val(i))
Set nodeID = Synergy.CreateIntegerArray()
Set Value = Synergy.CreateDoubleArray()
PlotManager.GetScalarData ResultID, Indp, nodeID, Value
Ave = 0.0
Count = 0.0
For j = 0 To nodeID.size - 1

Count = Count +1

Examples | 19

Ave = Ave + Value.val(j)
Next
If Count > 0 Then

Ave = Ave / cdbl(count)
End If

Str = Str + "Time=" & CStr(IndpValues.val(i)) & " Average P =" & Ave
&" MPa" & vbCRLF
Next
MsgBox Str

'Recreate current Time Series Pressure Result
Set UserPlot = PlotManager.CreateUserPlot()
Header = "New Pressure Time Series"
PlotManager.DeletePlotByName(Header)
UserPlot.SetName(Header)
UserPlot.SetDataType("NDDT")
UserPlot.SetDeptUnitName("MPa")
UserPlot.SetDeptName("Time")
UserPlot.SetVectorAsDisplacement(False)
For i = 0 to IndpValues.size-1
Set Indp = Synergy.CreateDoubleArray()
Indp.AddDouble(IndpValues.Val(i))
Set nodeID = Synergy.CreateIntegerArray()
Set Value = Synergy.CreateDoubleArray()
PlotManager.GetScalarData ResultID, Indp, nodeID, Value
UserPlot.AddScalarData IndpValues.Val(i), nodeID, Value

Next
UserPlot.Build()

MsgBox "Script Complete"
Wscript.Quit

API example: Looping through entities
Entities in studies are available though linked lists, one for each entity type,
such as node, triangle, tetrahedron (tetra), and so forth. This example
implements several loops for looking at each entity of each type.

This script performs the following tasks:

■ Finds the maximum node number
■ Counts the number of beams
■ Counts the number of tetras
■ Counts the number of triangles

You can use this script when you want to read nodal data.

'@
'@ DESCRIPTION
'@ Example of how to loop through entities using the API
'@
'@ SYNTAX
'@ LoopThroughEntities
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@ none
'@
'@ History

20 | Examples

'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim StudyDoc
Dim MaxNumber, Node, NodeNumber, Count, Tri, Tet, Beam

Set StudyDoc = Synergy.StudyDoc

' Loop through all nodes and find the highest Node Number

MaxNumber = 0
Set Node = StudyDoc.GetFirstNode()
While Not Node Is Nothing

NodeNumber = StudyDoc.GetEntityID(Node)
If NodeNumber > MaxNumber Then

MaxNumber = NodeNumber
End if
Set Node = StudyDoc.GetNextNode(Node)

Wend
MsgBox "Maximum Node Number in Model is: " & CStr(MaxNumber)

' Count all Triangular Elements in the Model
Count = 0
Set Tri = StudyDoc.GetFirstTri()
While Not Tri Is Nothing

Count = Count + 1
Set Tri = StudyDoc.GetNextTri(Tri)

Wend
MsgBox "Model Contains " & CStr(Count) & " Triangular Elements"

' Count all Tet Elements in the Model
Count = 0
Set Tet = StudyDoc.GetFirstTet()
While Not Tet Is Nothing

Count = Count + 1
Set Tet = StudyDoc.GetNextTet(Tet)

Wend
MsgBox "Model Contains " & CStr(Count) & " Tet Elements"

' Count all Beam Elements in the Model
Count = 0
Set Beam = StudyDoc.GetFirstBeam()
While Not Beam Is Nothing

Count = Count + 1
Set Beam = StudyDoc.GetNextBeam(Beam)

Wend
MsgBox "Model Contains " & CStr(Count) & " Beam Elements"

MsgBox "Script Complete"
Wscript.Quit

API example: The minimum, maximum, average of an
entity list

When you select a set of entities, the selection is made available through
the Application Programming Interface (API) as an entity list. This list is
unsorted, like the list of elemental results in a result.

Examples | 21

The following example finds the minimum, maximum and average values
of the result that is currently displayed, for the selected entities.

NOTE: For large models or large selections, it may be beneficial to sort the
lists first to reduce the time spent matching the selected entities to results.

Before running this script, you must complete the following steps:

1 Select entities in the model.
2 Select a plot.

In the following example, some error checking has been implemented. The
script checks that entities have been selected, and that there is a valid,
active plot.

'@
'@ DESCRIPTION
'@ This command will calculate the result Minimum Maximum and Average
Value
'@ of the entities selected
'@
'@ SYNTAX
'@ MinimumMaximumAverage
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@ 1. User must select a group of entities before using this command
'@ 2. User must select a result before using this command
'@ 3. Only works with nodal/elemental plots ie no vector/tensor plots
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("Synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim StudyDoc, Viewer, Plot, PlotManager
Dim EntList, ResultID, ResultType, ResultName, ResultData
Dim IndpValues, IndpValues1
Dim EntityIndex, Result, ElementNumber, NodeNumber
Dim Min, Max, Ave, Count, Value, I, J, Ent, Name

' Check that the user has selected some Entities
Set StudyDoc = Synergy.StudyDoc
Set EntList = StudyDoc.Selection
If EntList.Size <= 0 Then

MsgBox "No Entities Selected",,"Error"
WScript.Quit

End If

' Read/Check the Plot Information is correct
' Get Plot
Set Viewer = Synergy.Viewer
Set Plot = Viewer.ActivePlot()
If Plot Is Nothing Then

MsgBox "Please Select a result",,"Error"
WScript.Quit

End If

' Read Result ID Type

22 | Examples

ResultID=Plot.GetDataID

' Read the Result Name
ResultName = Plot.GetName

' Check for Invalid Plot Data
ResultData = Plot.GetDataType
If ResultData <> "ELDT" and ResultData <> "NDDT" Then

MsgBox "Data Type Not Supported",,"Error"
WScript.Quit

End If

' Check for Invalid Plot Types
ResultType = Plot.GetPlotType
If ResultType <> "Contour Plot" Then

MsgBox "Plot Type Not Supported",,"Error"
WScript.Quit

End If

' Read the Result Data set
' Ensure we read the last data set
Set PlotManager = Synergy.PlotManager
Set IndpValues = Synergy.CreateDoubleArray()
PlotManager.GetIndpValues ResultID, IndpValues
Set IndpValues1 = Synergy.CreateDoubleArray()
IndpValues1.AddDouble(IndpValues.Val(IndpValues.Size()-1))
' Read Result Data from last set

Set EntityIndex = Synergy.CreateIntegerArray()
Set Result = Synergy.CreateDoubleArray()
PlotManager.GetScalarData ResultID, IndpValues1, EntityIndex, Result

' Calcuate the required Values
Min = 1.0E20 ' Set extremely Large Value
Max = -1.0E20 ' Set extremely Small Value
Ave = 0.0
Count= 0

' If Result in Elemental then loop through selected elements
If ResultData = "ELDT" Then
For I = 0 To EntList.Size()-1
Set Ent = EntList.Entity(I)
Name = Ent.ConvertToString
If (Left(Name,1) = "T" and Left(Name,2) <> "TE") Then

ElementNumber = StudyDoc.GetEntityID(Ent)
For J = 0 To EntityIndex.Size()-1
If EntityIndex.Val(J) = ElementNumber Then
Count = Count + 1
Value = Result.Val(J)
If (Value > Max) Then
Max = Value

End If
If (Value < Min) Then
Min = Value

End If
Ave = Ave + Value

End If
Next

End If
Next

' If Result in Nodal then loop through selected nodes
ElseIf ResultData = "NDDT" Then
For I = 0 To EntList.Size()-1
Set Ent = EntList.Entity(I)
Name = Ent.ConvertToString
If (Left(Name,1) = "N") Then

NodeNumber = StudyDoc.GetEntityID(Ent)
For J = 0 To EntityIndex.Size()-1
If EntityIndex.Val(J) = NodeNumber Then

Examples | 23

Count = Count + 1
Value = Result.Val(J)
If (Value > Max) Then
Max = Value

End If
If (Value < Min) Then
Min = Value

End If
Ave = Ave + Value

End If
Next

End If
Next

End If

' Display Results
If Count > 0 Then

Ave = Ave / CDbl(Count)
MsgBox "Analysing result :" & ResultName & vbcrLf & _

"Number of Selected Entities is: " & Cstr(Count) & vbcrLF & _
"Minimum is: " & Cstr(Min) & vbcrLF & _
"Maximum is: " & Cstr(Max) & vbcrLF & _
"Average is: " & Cstr(Ave)

Else
MsgBox "Analysing result :" & ResultName & vbcrLf & _

"Number of Selected Entities is: " & Cstr(Count) & vbcrLF
End If

MsgBox "Script Completed"
WScript.Quit

API example: Writing nodal data to a file
The standard file facilities provided in the programming language you are
using (File.Write for VBScript) are used to write to external files and launch
external programs.

This example creates a new comma delimited file (*.csv), and writes the
following information to the file for each node in the model:

Node number, x coordinate, y coordinate, z coordinate

When the file has been written, an external application (Notepad) is
launched to display the file.

'@
'@ DESCRIPTION
'@ Extract all Nodal Coordinates to a comma separated text file
'@
'@
'@ SYNTAX
'@ WriteNodalData
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@
'@
'@ History
'@ Created DRA 9/8/2006
'@@

24 | Examples

Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim StudyDoc, App
Dim FS, TemporaryFolder, TempFolder, Name, lFile
Dim Str, Node, NodeNumber, Coord

Set StudyDoc = Synergy.StudyDoc()

'Open a File in the users temporary Directory
Set FS = CreateObject("Scripting.FileSystemObject")
TemporaryFolder = 2
Set TempFolder = FS.GetSpecialFolder(TemporaryFolder)
Name = "data.txt"
Set lFile = TempFolder.CreateTextFile(Name, True)

' Write File Header
Str = "Node" & "," & "X" & "," & "Y" & "," & "Z" & vbCrLf
lFile.Write Str

' Loop through all nodal
Set Node = StudyDoc.GetFirstNode()
While Not Node Is Nothing

NodeNumber = StudyDoc.GetEntityID(Node)
Set Coord = StudyDoc.GetNodeCoord(Node)
Str = NodeNumber & "," & Coord.X & "," & Coord.Y & "," & Coord.Z

& vbCRLF
lFile.Write Str
Set Node = StudyDoc.GetNextNode(Node)

Wend

' Close File
lFile.Close

' Notify user where the file is located
MsgBox "Nodal Data Recorded In File" & vbCRLF & TempFolder.Path & "\" &
Name

' Open the File in Notepad
Set App = WScript.CreateObject("WScript.Shell")
Dim Command
Command = "notepad.exe " & TempFolder.Path & "\" & Name
App.Run Command

MsgBox "Script Complete"
Wscript.Quit

API example: Creating multiple drops
New entities can be created through the Application Programming Interface
(API). This example creates entities for a hot runner system gated to selected
nodes, and then meshes the new entities. The numbers used in properties
(five-digit constants in the example) can be found in the tcodes.dat and
tcodeset.dat files in the data/dat directory of the installed Autodesk
Moldflow Insight software.

Examples | 25

NOTE: The tcodeset reference can help you understand how to use
properties in scripts.

'@
'@ DESCRIPTION
'@ This command will run all Models in the current directory
'@
'@
'@ SYNTAX
'@ CreateDrops
'@
'@ PARAMETERS
'@ none
'@
'@ DEPENDENCIES/LIMITATIONS
'@
'@ History
'@ Created DRA 9/8/2006
'@@
Option Explicit
SetLocale("en-us")
Dim Synergy
Set Synergy = CreateObject("synergy.Synergy")
Synergy.SetUnits "METRIC"

Dim StudyDoc, PropEd, Modeler, MeshGenerator, Viewer
Dim SelectList, Prop, DVec, DVec1, HotGateCount, HotRunCount
Dim I, nodeCoord, BaseX, BaseY, BaseZ, Vector, Vector_1, EntList

Set StudyDoc = Synergy.StudyDoc()
If StudyDoc is Nothing Then

MsgBox "No Active Study",,"Error"
WScript.Quit

End If

Set SelectList = StudyDoc.Selection
If SelectList.Size = 0 Then

MsgBox "No Entities have been selected",,"Error"
WScript.Quit

End If

Set PropEd = Synergy.PropertyEditor()
Set Modeler = Synergy.Modeler()

' Create Properties for Gate
HotGateCount = GetLastTsetID(40434) + 1
Set Prop = PropEd.CreateProperty(40434, HotGateCount, True)
Set DVec = Synergy.CreateDoubleArray()
DVec.AddDouble 2
Prop.FieldValues 30212, DVec
Set DVec1 = Synergy.CreateDoubleArray()
DVec1.AddDouble 1.5
DVec1.AddDouble 5
Prop.FieldValues 30262, DVec1
PropEd.CommitChanges ""

' Create Properties for Drop
HotRunCount = GetLastTsetID(40430) + 1
Set Prop = PropEd.CreateProperty(40430, HotRunCount, True)
Set DVec = Synergy.CreateDoubleArray()
DVec.AddDouble 10
Prop.FieldValues 30260, DVec
PropEd.CommitChanges ""

' Loop Through Slected Nodes and create Gates and Drops
For I = 0 To SelectList.Size()-1

Dim Ent

26 | Examples

Set Ent = SelectList.Entity(I)
Dim EntName
EntName = Ent.ConvertToString
If (Left(EntName, 1) = "N") Then

Set nodeCoord = StudyDoc.GetNodeCoord(Ent)
BaseX = nodeCoord.X
BaseY = nodeCoord.Y
BaseZ = nodeCoord.Z
Set Vector = Synergy.CreateVector()
Set Vector_1 = Synergy.CreateVector()
Set Modeler = Synergy.Modeler()
' Create Gate
Set Prop = Modeler.FindProperty(40434, HotGateCount)
Vector.SetXYZ BaseX, BaseY, BaseZ
Vector_1.SetXYZ 0, 0, 5
Set EntList = Modeler.CreateLine(Vector, Vector_1, True,

Prop, True)
PropEd.SetProperty EntList, Prop
' Create Drop
Set Prop = Modeler.FindProperty(40430, HotRunCount)
Vector.SetXYZ BaseX, BaseY, BaseZ+5
Vector_1.SetXYZ 0, 0, 100
Set EntList = Modeler.CreateLine(Vector, Vector_1, True,

Prop, True)
PropEd.SetProperty EntList, Prop

End If
Next

' Save All Proerty Data
PropEd.CommitChanges "Assign"

' Mesh the new drops
Set MeshGenerator = Synergy.MeshGenerator()
MeshGenerator.Generate

' Display Updated Model
Set Viewer = Synergy.Viewer()
Viewer.Fit

' Exist Script
MsgBox "Script Complete"
WScript.Quit

' Function to Find Last Instance of a Tset in the Study File
Private Function GetLastTsetID(Tset)

GetLastTsetID = 0
Dim Project, PropEd
Set Project = Synergy.Project()
Set PropEd = Synergy.PropertyEditor()
Dim TestPropertyID
Set TestPropertyID = PropEd.GetFirstProperty(Tset)
While Not TestPropertyID Is Nothing

GetLastTsetID = TestPropertyID.ID
if TestPropertyID.ID > GetLastTsetID Then

GetLastTsetID = TestPropertyID.ID
End if
Set TestPropertyID =

PropEd.GetNextPropertyOfType(TestPropertyID)
Wend

End Function

Examples | 27

	Contents
	Application Programming Interface (API)
	The OLE Automation Interface
	Macros
	Macros
	Creating macros
	Playing macros or scripts using the menu
	Running a macro or script from Windows Explorer
	Assigning macros or Visual Basic scripts to toolbar buttons

	Macros
	Assign Macro/Command Button dialog

	Limitations in API functionality

	Autodesk Moldflow Insight command line and VB scripts
	Autodesk Moldflow Insight command line and VB scripts
	Creating a Visual Basic script
	Debugging a Visual Basic script
	Playing macros or scripts using the menu
	Running a macro or script from Windows Explorer
	Running a Visual Basic script using the command line
	Assigning macros or Visual Basic scripts to toolbar buttons

	Autodesk Moldflow Insight command line and VB scripts
	Command Line dialog

	VBScript references

	Examples
	API example: The first lines of a script
	API example: Customized aspect ratio plot
	API example: Showing thicknesses within a range
	API example: Reading pressure data
	API example: Looping through entities
	API example: The minimum, maximum, average of an entity list
	API example: Writing nodal data to a file
	API example: Creating multiple drops

